### 1 — 14:00 — Tensor Methods for Nonconvex Optimization using Cubic-quartic regularization models

High-order tensor methods for solving both convex and nonconvex optimization problems have recently generated significant research interest, due in part to the natural way in which higher derivatives can be incorporated into adaptive regularization frameworks, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, to find the next solution approximation, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of the change in the iterates. Developing efficient techniques for the solution of such subproblems is currently, an ongoing topic of research, and this talk addresses this question for the case of the third-order tensor subproblem.

In particular, we propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with Quartic Regularisation, by sequentially minimizing a sequence of local quadratic models that also incorporate both simple cubic and quartic terms. The role of the cubic term is to crudely approximate local tensor information, while the quartic one provides model regularization and controls progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $O(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases. We propose practical CQR variants that judiciously use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.

### 2 — 14:30 — A consistently adaptive trust-region method

Adaptive trust-region methods attempt to maintain strong convergence guarantees without depending on conservative estimates of problem properties such as Lipschitz constants. However, on close inspection, one can show existing adaptive trust-region methods have theoretical guarantees with severely suboptimal dependence on problem properties such as the Lipschitz constant of the Hessian. For example, TRACE developed by Curtis et al. obtains a $O(\Delta_f L^{3/2} \epsilon^{-3/2}) + \tilde{O}(1)$ iteration bound where $L$ is the Lipschitz constant of the Hessian. Compared with the optimal $O(\Delta_f L^{1/2} \epsilon^{-3/2})$ bound this is suboptimal with respect to $L$. We present the first adaptive trust-region method which circumvents this issue and requires at most $O( \Delta_f L^{1/2} \epsilon^{-3/2}) + \tilde{O}(1)$ iterations to find an $\epsilon$-approximate stationary point, matching the optimal iteration bound up to an additive logarithmic term. Our method is a simple variant of a classic trust-region method and in our experiments performs competitively with both ARC and a classical trust-region method.

### 3 — 15:00 — A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees

We consider minimization of a smooth nonconvex function with inexact oracle access to gradient and Hessian (without assuming access to the function value) to achieve approximate second-order optimality. A novel feature of our method is that if an approximate direction of negative curvature is chosen as the step, we choose its sense to be positive or negative with equal probability. We allow gradients to be inexact in a relative sense and relax the coupling between inexactness thresholds for the first- and second-order optimality conditions. Our convergence analysis includes both an expectation bound based on martingale analysis and a high-probability bound based on concentration inequalities. We apply our algorithm to empirical risk minimization problems and obtain improved gradient sample complexity over existing works.

### 4 — 15:30 — A MINRES-based Algorithm Framework for Unconstrained Nonconvex Optimization with Non-positive Curvature Detection

In this talk, we present a MINRES-based algorithm framework for unconstrained nonconvex optimization problems. Our approach utilizes the minimal residual method (MINRES), a well-known solver for indefinite symmetric linear systems, to compute descent directions that leverage higher order and non-positive curvature (NPC) information. We derive and discuss asymptotic convergence properties in both linesearch and trust region settings. Moreover, under the Kurdyka-Lojasiewicz property, we prove that the proposed approach can avoid strict saddle points and converges to second order optimal points. This is primarily achieved by using proper regularizations of the Newton system and forward linesearch along NPC directions. Finally, we consider potentially indefinite variants of several limited memory quasi-Newton matrices (including BFGS, DFP, SR1 and PSB updates) and show how such updates can be applied and incorporated in our algorithm framework. Numerical experiments on the CUTEst test collection and on a deep auto-encoder problem illustrate the efficiency of the proposed methodology.