108:30 — ** Permuted with Kuhn's talk at 9:30** Distributionally Robust Linear Quadratic Control

The Linear-Quadratic-Gaussian (LQG) problem is a fundamental control paradigm that has been studied and applied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics affected by additive noise and with imperfect state observations, with the goal of minimizing a quadratic cost function depending on the state and control variables. In this work, we consider a generalization of the discrete-time, finite-horizon LQG problem where the noise distributions are unknown and belong to Wasserstein ambiguity sets centered at nominal (Gaussian) distributions. The objective is to minimize a worst-case cost across all distributions in the ambiguity set, including non-Gaussian distributions. Despite the added complexity, we prove that a control policy that is linear in the observations is optimal, as in the classic LQG problem. We propose a numerical solution method that efficiently characterizes this optimal control policy. Our method uses the Frank-Wolfe algorithm to identify the least-favorable distributions within the Wasserstein ambiguity sets and computes the controller’s optimal policy using Kalman filter estimation under these distributions.

209:00 — Randomized Assortment Optimization

When a firm selects an assortment of products to offer to customers, it uses a choice model to anticipate their probability of purchasing each product. In practice, the estimation of these models is subject to statistical errors, which may lead to significantly suboptimal assortment decisions. Recent work has addressed this issue using robust optimization, where the true parameter values are assumed unknown and the firm chooses an assortment that maximizes its worst-case expected revenues over an uncertainty set of likely parameter values, thus mitigating estimation errors. In this talk, we introduce the concept of randomization into the robust assortment optimization literature. We show that the standard approach of deterministically selecting a single assortment to offer is not always optimal in the robust assortment optimization problem. Instead, the firm can improve its worst-case expected revenues by selecting an assortment randomly according to a prudently designed probability distribution. We demonstrate this potential benefit of randomization both theoretically in an abstract problem formulation as well as empirically across three popular choice models: the multinomial logit model, the Markov chain model, and the preference ranking model. We show how an optimal randomization strategy can be determined exactly and heuristically. Besides the superior in-sample performance of randomized assortments, we demonstrate improved out-of-sample performance in a data- driven setting that combines estimation with optimization. Our results suggest that more general versions of the assortment optimization problem—incorporating business constraints, more flexible choice models and/or more general uncertainty sets—tend to be more receptive to the benefits of randomization.

309:30 — ** Permuted with Iancu's talk at 8:30** Wasserstein Distributionally Robust Optimization with Heterogeneous Data Sources

We study decision problems under uncertainty, where the decision-maker has access to K data sources that carry biased information about the underlying risk factors. The biases are measured by the mismatch between the risk factor distribution and the K data-generating distributions with respect to an optimal transport (OT) distance. In this situation the decision-maker can exploit the information contained in the biased samples by solving a distributionally robust optimization (DRO) problem, where the ambiguity set is defined as the intersection of K OT neighborhoods, each of which is centered at the empirical distribution on the samples generated by a biased data source. We show that if the decision-maker has a prior belief about the biases, then the out-of-sample performance of the DRO solution can improve with K; irrespective of the magnitude of the biases. We also show that, under standard convexity assumptions, the proposed DRO problem is computationally tractable if either K or the dimension of the risk factors is kept constant.

410:00 — Learning Optimal and Fair Policies for Online Allocation of Scarce Societal Resources from Data Collected in Deployment

We study the problem of allocating scarce societal resources of different types (e.g., permanent housing, deceased donor kidneys for transplantation, ventilators) to heterogeneous allocatees on a waitlist (e.g., people experiencing homelessness, individuals suffering from end-stage renal disease, Covid-19 patients) based on their observed covariates. We leverage administrative data collected in deployment to design an online policy that maximizes expected outcomes while satisfying budget constraints, in the long run. Our proposed policy waitlists each individual for the resource maximizing the difference between their estimated mean treatment outcome and the estimated resource dual-price or, roughly, the opportunity cost of using the resource. Resources are then allocated as they arrive, in a first-come first-serve fashion. We demonstrate that our data-driven policy almost surely asymptotically achieves the expected outcome of the optimal out-of-sample policy under mild technical assumptions. We extend our framework to incorporate various fairness constraints. We evaluate the performance of our approach on the problem of designing policies for allocating scarce housing resources to people experiencing homelessness in Los Angeles based on data from the homeless management information system. In particular, we show that our policies simultaneously improve exit rates from homelessness and enhance fairness compared to historical allocations.